针对卷积神经网络(CNN)在医学图像分割时,Median arcuate ligament受皮肤病损图像多样性、分割目标位置、形状及尺度变化等因素影响,提出了一种基于传统卷积神经网络综合注意力模块图像分割算法;首先利用U-Net主干网络的优势,其目的让图像特征提取更完善;其次,由空间、通道、尺度构成的综合注意力机制对目标病灶区域进行检测识别,利用通道级联把来自selleck NMR编码器中低级图像特征和解码器中高级图像特征注意力结合起来进行权值自适应融合,提升了网络对样本病灶区的关注度和辨识力,突出强调最相关的特征通道和多尺度间最显著的特征图;通过对ISIC2018数据集及医院整形外科提供患者不同类型的皮肤肿瘤https://www.selleck.cn/products/lgk-974.html图像进行分割测试,并将注意力模块随机组合形成的不同算法进行指标评价比对,所提出算法的平均分割精度可达92.89%;实验结果表明,所提出算法是有效可行的,在多维度下分割处理带复杂背景的皮肤病灶图像时有更高的鲁棒性。